
esig Documentation
Release 0.6

David Maxwell

Aug 28, 2020

Contents

1 Prerequisites for the esig Package 3
1.1 Getting your Python Version . 3
1.2 Installing and Configuring Boost . 4

1.2.1 Windows . 4
1.2.2 Linux and macOS . 5

2 Installing esig 9
2.1 Custom Library and Include Paths . 9
2.2 Building/Installing Fails! . 10
2.3 Running Tests . 10

3 Troubleshooting the esig Installation 11
3.1 Unknown Command bdist_wheel . 11
3.2 Permission Denied when Installing . 11
3.3 Can’t Load Boost libraries . 12
3.4 numpy error . 12

4 esig: What is it? 13

5 esig: How to use it? 15

6 Who is Involved? 17

i

ii

esig Documentation, Release 0.6

This is the online documentation for the Python esig package up to version 0.7.1 - the package is currently undergoing
revision to provide substantial additional functionality and speed. The version 0.7.3 only supports Python >= 3.5 and
64bit. It does not support 32 bit installations. It has the same interface with a new functionality in “recombine” that
can reduce clouds of paths to a small reweighted subcollection while retaining their expected signature. This code
relies on MKL, OpenMP, and heavy parallel linear algebra. As a result the build process from the gz file has changed
from this documentation. The wheel, with pip install esig will install on Linux (ManyLinux2014), Mac and Windows
but requires a current version of pip (in particular the one shipped with Ubuntu 18.04 is too old - so update it first). If
you have trouble please let us know and install 0.7.1. Below you’ll find the table of contents for version 0.6.

Contents 1

esig Documentation, Release 0.6

2 Contents

CHAPTER 1

Prerequisites for the esig Package

In order to successfully download, build and run the esig package on your computer, you are required to have the
following prerequisite software packages installed and correctly configured on your system.

You require:

• Python, version 2.7.x, or version 3.x; and

• the Boost C++ library.

This section provides a brief overview on how to download, setup and configure each of these prerequisites. After
completing these steps, esig will be able to build correctly on your system (see chap-installer.)

Important: On supported Windows systems, you don’t need to install Boost. We do all the hard work for you by
creating a series of precompiled Python wheels. If you want to build Boost from source on Windows, you’ll need to
install Boost and make sure you have the relevant Microsoft Visual C++ compiler.

Warning: The following guides are for reference only. There are no guarantees that the following instructions
will work flawlessly on your system, although they have been tested and shown to work on a range of systems. For
the latest documentation regarding Boost, you should always check out the official Boost documentation page.

1.1 Getting your Python Version

It’s a good idea to determine what version of Python you’ll be running esig on – especially if you are using Windows.
If you’re using Linux of macOS, you can skip this section. This is because you will need to download a version
of Boost that will be able to work with your version of Python. To obtain your Python version, open a Command
Prompt and enter the following command.

C:\> python -V
Python 3.6.1

3

http://www.boost.org/
https://wheel.readthedocs.io/en/latest/
https://support.microsoft.com/en-gb/help/2977003/the-latest-supported-visual-c-downloads
http://www.boost.org/doc/

esig Documentation, Release 0.6

The example above shows that the version of Python running is version 3.6.1. Make a note of this number – you’ll
need to pick the appropriate Boost downloadable in the following step.

1.2 Installing and Configuring Boost

This section details how you can install and configure (if required) Boost on your system. The process should be
straightforward: you should be able to install a precompiled version for your system from your system’s package
manager (for example, apt-get or yum). Windows is straightforward, too – although you need to ensure that you
have set a special environment variable so that the Boost libraries and header files can be located when you attempt to
install esig. This guide shows you how to get everything working.

1.2.1 Windows

On Windows, the setup process involves two main steps: (1) downloading and installing precompiled Boost libraries;
and (2) ensuring that your environment variables are correctly configured. We – and our esig installer – assume that
you are using the default path names for the Boost libraries.

Downloading Boost

There are a large number of precompiled versions of Boost for Windows available online. But which one do you
download? Pick the latest one – at the time of writing, it is 1.65.1. Within this directory, there are a variety of
different executable downloads. For Boost to work with esig, you need to pick a precompiled version of Boost that
was compiled with the same Microsoft Visual C compiler as your version of Python. That’s why we asked you to get
your Python version beforehand – the number will now come in handy.

From the table below, work out what Visual C compiler maps to your version of Python. This table is taken from the
official Python documentation – check out this page for more information.

Python Version Visual C Compiler
2.7, 3.0 - 3.2 msvc9.0
3.3 - 3.4 msvc10.0
3.5 - 3.6 msvc14.0

Once you have worked out what Visual C compiler was used to compile your version of Python on Windows, head
back to the Boot precompiled libraries page and select the version you require. In the example screenshot below, the
highlighted option boost_1_65_1-msvc-14.0-64.exe will provide a 64-bit Boost version 1.65.1 compiled
against the msvc14.0 compiler. Check whether you’re using a 32-bit or 64-bit system, too! Today, it’s likely you’ll
be using a 64-bit system.

images/boost-library-select.png

Note: You don’t need to actually download the Visual C compiler – we have provided a series of precompiled Python
wheels for various versions of Python on Windows. If you however do plan to compile from source, you will of course
need to download the appropriate compiler.

4 Chapter 1. Prerequisites for the esig Package

https://sourceforge.net/projects/boost/files/boost-binaries/
https://wiki.python.org/moin/WindowsCompilers
https://sourceforge.net/projects/boost/files/boost-binaries/
https://wheel.readthedocs.io/en/latest/

esig Documentation, Release 0.6

Installing Boost

Installing Boost is just like installing any other application on Windows – run the executable installer, and everything
will be taken care of for you. The process will take several minutes as there are many files that need to be extracted
from the archive.

Once complete, you can check the installed directory. The screenshot below provides an example. Highlighted are
the two important directories – the header files are located in boost, and the precompiled libraries are present in the
other directory.

images/boost-directory.png

Note: Make a note of the directory in which you install Boost to. You’ll need this for the next step. The default path
is C:\local\boost_1_65_1\ – replacing the version with the version you have selected. Try to avoid spaces in
paths – this makes things easier.

The BOOST_ROOT Environment Variable

On Windows machines, the BOOST_ROOT environment variable is the recommended way to tell the Visual C compiler
where all the Boost libraries and header files live for the version you have installed.

On recent Windows releases (7, 8, 8.1 and 10) you can use the Command Prompt’s setx tool. Run the following
command, replacing <BOOST_PATH> with the path to the directory you installed Boost to in the previous step.

C:\> setx BOOST_ROOT <BOOST_PATH>

SUCCESS: Specified value was saved.

The screenshot below shows the basic process, and also includes an example of using the set command to verify that
BOOST_ROOT has been set correctly.

images/set-env.png

Once you’ve done this, you are ready to install esig.

1.2.2 Linux and macOS

Using your Package Manager

To keep things simple, we highly recommend that you download and install a precompiled version of the Boost
libraries for your Linux distribution or macOS system. Depending upon what system you are using, the command you
supply to do this somewhat varies.

1.2. Installing and Configuring Boost 5

https://en.wikipedia.org/wiki/Environment_variable
http://www.boost.org/doc/libs/1_55_0/more/getting_started/windows.html

esig Documentation, Release 0.6

On macOS, you can either use MacPorts or Homebrew to install the software. With MacPorts, you can try the
following command.

$ sudo port install boost

Alternatively, if you have Homebrew installed, try this command.

$ sudo brew install boost

Both should install Boost without problem to a default path, and from here, you’re good to go.

Linux commands are pretty similar. If you’re using Ubuntu try the following command.

$ sudo apt-get install libboost-all-dev

Alternatively, a Red Hat based system will use yum – the following command should work on Fedora, CentOS, RHEL
and other Red Hat-based systems.

$ sudo yum install boost-devel

If your distribution isn’t listed here, then a quick Web search should provide you with all the information that you
need.

Building from Source

If your system doesn’t have a package manager, or it doesn’t provide Boost, you can always download the Boost
sources and compile them yourself. Download the Boost sources for UNIX from here (the .tar.gz file), and extract
everything to a temporary directory.

Warning: You need to ensure that you have all the development tools your system needs to compile the Boost
libraries. For macOS, this will involve installing Xcode. On Linux distributions, this will involve installing the
necessary packages (e.g. sudo apt-get install build-essential or sudo yum groupinstall
"Development Tools".)

After everything has been extracted, open a terminal and cd to the extracted directory. The following commands must
then be run.

$./bootstrap.sh
$ sudo ./b2 install

Running the second command requires sudo privileges as it compiles the software and then attempts to copy the
Boost header files and compiled libraries to /usr/local/, which is the default path for the installation of such
components. If you don’t have sudo access, you can always compile and install the components to a directory within
your home directory with the following commands.

$./bootstrap.sh --prefix=$HOME/local/
$./b2 install

The example above will install Boost to $HOME$/local/, where $HOME represents the path to your home directory.
If you go down this custom path (no pun intended), you’ll need to make sure that the installer can see the necessary
header files and libraries, otherwise compilation of esig will fail. Refer to Installing esig to see how to do this. When
running esig this way, you’ll need to make sure you have set the LD_LIBRARY_PATH (or DYLD_LIBRARY_PATH
on macOS) environment variable to also point to where you installed the compiled Boost libraries.

6 Chapter 1. Prerequisites for the esig Package

https://www.macports.org/
https://brew.sh/
https://www.ubuntu.com/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux
http://www.boost.org/users/download/
https://developer.apple.com/xcode/

esig Documentation, Release 0.6

Assuming that Boost libraries are installed to $HOME/local/boost/lib/, you can set the environment variable
as shown in the example below.

$ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/local/boost/lib

On macOS, change LD_LIBRARY_PATH to DYLD_LIBRARY_PATH. You can place this command in your ~/.
profile or ~/.bashrc files to ensure that this path is set everytime you start a new terminal.

1.2. Installing and Configuring Boost 7

esig Documentation, Release 0.6

8 Chapter 1. Prerequisites for the esig Package

CHAPTER 2

Installing esig

Once you have checked out the Prerequisites for the esig Package, you’re ready to install esig. And it should be
really easy! To install, create a new virtual environment (if you want to), or activate the one you wish to install it to.
Once you’re ready to install, run the following command from your terminal or Windows command prompt.

$ pip install esig

That should be it. esig should install, either from a precompiled wheel for your platform, or build the package from
the source. If it builds from source, expect compilation time to take 5-10 minutes depending upon your system. If you
already have esig installed and wish to upgrade to a newer version, run the following command.

$ pip install esig --upgrade

Note: If building from source (i.e. the .tar.gz archive), note that the terminal may seem unresponsive. Don’t
worry, it’s compiling – it just takes a few minutes.

Once installed, you can test that the install process worked as expected by trying the following commands.

$ python -c "import esig; esig.is_library_loaded()"
True

If you see True, then all is well, and you’re ready to go. If you don’t see True, but False and an error, check out
Troubleshooting the esig Installation.

2.1 Custom Library and Include Paths

If you require to build esig from source and have installed Boost or any other prerequisite to a non-standard location,
we’ve provided functionality for you to specify where the installer should look for the relevant header files and libraries.
This functionality is provided by supplying to additional command-line arguments to the installation scripts for esig
– include-dirs and library-dirs. More than one directory can be supplied for each argument, separated by
the path separator character for your platform (; for Windows, : for other platforms). You don’t need to supply both

9

https://virtualenv.pypa.io/en/stable/
https://wheel.readthedocs.io/en/latest/

esig Documentation, Release 0.6

arguments; if for example you only need to supply a path to libraries, you only need to supply the library-dirs
argument.

To supply these arguments to pip, you need to wrap them up inside an install-option parameter. For example,
if we have include files located at /opt/boost/include and libraries located at both /opt/boost/lib and
/opt/other/lib on a Linux installation, we would supply the following command.

$ pip install esig --install-option="--include-dirs=/opt/boost/include" --install-
→˓option="--library-dirs=/opt/boost/lib:/opt/other/lib"

Note each argument needs to be wrapped inside its own --install-option parameter. If installing directly from
your local filesystem, just call the setup.py module like so.

$ python setup.py --include-dirs=/opt/boost/include --library-dirs=/opt/boost/lib:/
→˓opt/other/lib

Your additional paths are added to the two lists of search directories, so everything should be able to be found and
used as required during the build process.

2.2 Building/Installing Fails!

The pip package manager is designed to keep things as simple as possible to the user. As such, this means keeping
output on the user’s terminal to a minimum. While this is fine for 99% of scenarios, when things go wrong it’s more
useful to have as much information at your disposal. pip by default suppresses the output from installation scripts
that it runs, meaning that it can be difficult to work out what goes wrong.

If you are building esig from source and find that the build fails, the specially-crafted esig installer will provide
some useful output on lines starting with esig_installer. To access this output, run the installer again with
the -v switch (v for verbose). As an example, your command will be $ pip install esig -v. From this
information, you’ll be able to view Troubleshooting the esig Installation with more of an idea of what is wrong.

2.3 Running Tests

Once you have installed the software, we recommend that you run the provided unit tests. Doing so will give you
confidence that the software is returning correct output before you begin your experimentation.

To run tests, start your python interpreter, and follow the example below.

Python 3.6.1 (default, Jun 29 2017, 15:17:57)
[GCC 4.2.1 Compatible Apple LLVM 8.1.0 (clang-802.0.42)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from esig import tests
>>> tests.run_tests()
.......
--
Ran 7 tests in 0.033s

OK
>>>

After calling run_tests(), you should see all tests pass (at the time of writing, seven tests were implemented). If a
test(s) fail(s), you should contact us with information on your platform (operating system used, Python version used)
and what test(s) fail(s) – you may have discovered a bug that needs to be patched.

10 Chapter 2. Installing esig

CHAPTER 3

Troubleshooting the esig Installation

If you find yourself on this page, you may well have been directed to visit by the installer. Here, we detail and provide
solutions to a number of commonly occurring problems that you may find when attempting to install and use the
esig package. Compiling and ensuring that esig works correctly on a wide range of platforms is not trivial – a
lot of work has gone into ensuring it works on the greatest number of systems as possible. However, bad things can
happen. Hopefully this page will be able to resolve your problem – if not, feel free to contact one of the team listed on
The esig Python Package.

3.1 Unknown Command bdist_wheel

When compiling from source, you may find that the installer fails stating that the command bdist_wheel is not
a valid command. This is because your setuptools package is out of date, and/or you do not have the wheel
package installed.

To fix this problem, run the following commands. If you are using virtual environments, ensure you have activated
your virtual environments beforehand.

$ pip install setuptools --upgrade
$ pip install wheel --upgrade

These commands should fix the problem, and esig should then install without problem.

3.2 Permission Denied when Installing

When installing esig, you recieve a Permission Denied error. This means that copying package files to the
appropriate location failed as your account didn’t have sufficient privileges to do so. This will happen when you
attempt to install esig globally for your Python installation. You can do this by running the pip install esig
command with elevated privileges (e.g. sudo pip install esig on macOS/Linux, or running the command
in a Windows Command Prompt with elevated privileges). However, we recommened that you use Python virtual
environments, and install esig to one of those.

11

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

esig Documentation, Release 0.6

3.3 Can’t Load Boost libraries

If you attempt to import esig when running Python and you find an error stating that certain libraries cannot be
imported, you’ve most likely installed libraries that esig are dependent upon in a non-standard location. The solution
to this problem is to add the paths to the required libraries to your LD_LIBRARY_PATH or DYLD_LIBRARY_PATH
environment variable, on Linux or macOS respectively. Windows users will not run into this problem.

3.4 numpy error

We’re working on finding a solution for this problem.

12 Chapter 3. Troubleshooting the esig Installation

CHAPTER 4

esig: What is it?

The esig package provides implementations of a series of mathematical tools for the handling of the signature of a
path. Powered by the underlying libalgebra C++ package, developed by Terry Lyons et al. over a period of 15
years, the esig package has been further developed and extended by three 2017 Summer interns at the Alan Turing
Institute, London, England. Below we provide an explanation of what a path and a signature are – it gets mathematical.

Consider a path as smooth mapping from a time interval into some multidimensional space; it is a special case of a
continuous stream of data. A signature is a canonical transform of a data stream into a high dimensional space of
features; esig is a package for implementing this transform for paths – as a mathematical object, a signature is an
infinite tensor series. esig works with the truncated signatures having a certain degree. Formally and for piecewize
linear or smooth paths, each coordinate of the signature tensor is an iterated Riemann-Stieltjes integral; the ensemble
of these values represents an element in the tensor algebra of Euclidean space. Precise definitions and an introduction
to this particular research area can be found in this article written by Terry Lyons, as well as this survey paper.

In practice, paths are easy to visualize and summarise in the case where they are (well approximated) by piecewise
linear functions. If the initial and end points, as well as the intermediate points where direction changes, are collected
into an array then this discrete stream contains a full description of the path. The esig package takes such an array
as argument, and computes the signature (or logsignature) of the associated path truncated at a chosen degree.

The esig package is a python package, and the function stream2sig requires an input array that is an
np.array((l,n),dtype=float) of shape (l,n) where: l is the number of sample points in the path including both ends
and n is the dimension of the target space where the points live. In the following example, the path is given as the list
of coordinate vectors of points defining the piecewise linear path.

(0,1) --> (1,1) --> (2,2) --> (3,0)

The signature is then computed by calling a degree, after formatting the data as a float based numpy.array. The
degree is roughly defined as the number of iterations in the integration performed. In this example, degree 3 means
that all of the possible combinations of the coordinate functions

x_1 = (0 --> 1 --> 2 --> 3)
x_2 = (1 --> 1 --> 2 --> 0)

of length 3 or lower are integrated over. There is 1 combination of length 0, 2 combinations of lenght 1, 4 combinations
of length 2, 8 combinations of length 3, making the resulting vector have dimension 15.

13

http://www.turing.ac.uk/
http://www.turing.ac.uk/
https://arxiv.org/abs/1405.4537
https://arxiv.org/abs/1602.03255

esig Documentation, Release 0.6

The signature is a vectorisation of the path where the dimension of the feature set does not depend on the number of
points along the path.

If you’re interested in how the software was packaged up, you can look at the small reflection paper written by one of
the Summer interns, David Maxwell. The paper is available on arXiv.

14 Chapter 4. esig: What is it?

https://arxiv.org/

CHAPTER 5

esig: How to use it?

Once installed the esig package provides a very simple implementations for a limited series of core mathematical
operations for the handling of the signature of a path.

To get started import tosig from esig:

>>> from esig import tosig as ts

Then get help on the functionality tosig provides

>>> help(ts)

NAME esig.tosig - This is the tosig module from ESIG

FUNCTIONS

logsigdim(. . .) logsigdim(signal_dimension, signature_degree) returns a Py_ssize_t integer giving the dimen-
sion of the log signature vector returned by stream2logsig

logsigkeys(. . .) logsigkeys(signal_dimension, signature_degree) returns, in the order used by . . . 2logsig, a
space separated ascii string containing the keys associated the entries in the log signature returned by
. . . 2logsig

sigdim(. . .) sigdim(signal_dimension, signature_degree) returns a Py_ssize_t integer giving the length of the
signature vector returned by stream2logsig

sigkeys(. . .) sigkeys(signal_dimension, signature_degree) returns, in the order used by . . . 2sig, a space sepa-
rated ascii string containing the keys associated the entries in the signature returned by . . . 2sig

stream2logsig(. . .) stream2logsig(array(no_of_ticks x signal_dimension), signature_degree) reads a 2 dimen-
sional numpy array of floats, “the data in stream space” and returns a numpy vector containing the logsig-
nature of the vector series up to given signature_degree

stream2sig(. . .) stream2logsig(array(no_of_ticks x signal_dimension), signature_degree) reads a 2 dimen-
sional numpy array of floats, “the data in stream space” and returns a numpy vector containing the signature
of the vector series up to given signature_degree

To understand better, lets look at some of the helper functions

15

esig Documentation, Release 0.6

>>> ts.sigkeys(2,4)
' () (1) (2) (1,1) (1,2) (2,1) (2,2) (1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,1,1) (2,1,2)
→˓(2,2,1) (2,2,2) (1,1,1,1) (1,1,1,2) (1,1,2,1) (1,1,2,2) (1,2,1,1) (1,2,1,2) (1,2,2,
→˓1) (1,2,2,2) (2,1,1,1) (2,1,1,2) (2,1,2,1) (2,1,2,2) (2,2,1,1) (2,2,1,2) (2,2,2,1)
→˓(2,2,2,2)'

enumerates a basis for the tensor algebra on an alphabet of size 2 up to degree 4 as a text string.
ts.sigkeys(2,4).strip().split(” “) provides the same basis as a list. The signature is then computed by calling
stream2sig(path_data, truncation_degree), after formatting path_data as a numpy.array. The degree d is roughly
defined as the maximal order to which iterated integration is performed. The signature can then be represented as a
linear combination of words of length at most d. The logsignature has a more complicated but more compact repre-
sentation.

esig has other helper functions that can be used to access the data effectively.

>>> ts.sigkeys(2,4).strip().split(" ")[ts.sigdim(2,2):ts.sigdim(2,3)]
['(1,1,1)', '(1,1,2)', '(1,2,1)', '(1,2,2)', '(2,1,1)', '(2,1,2)', '(2,2,1)', '(2,2,2)
→˓']

trims the full basis to only those elements that have degree three in the tensor basis.

Very similar code works for calculating, accessing and manipulating the basis for the lie elements used for log signa-
tures and the log signature itself:

>>> ts.logsigkeys(2,4).strip().split(" ")[ts.logsigdim(2,2):ts.logsigdim(2,3)]
['[1,[1,2]]', '[2,[1,2]]']

Computing signatures and log signatures from the discrete sequences is achieved using stream2sig and stream2logsig.

Following the discussion above: The input stream is a numpy array of floats (not integers!); if one varies the first index
and fixes the second index then the values are those along a coordinate path (not increments), the number of coordinate
paths or channels in the path is determined by the second index, stream2sig deduces this from the width of the numpy
array. The depth of the calculated signature is an argument to be chosen by the user. The ouput is a one dimensional
array of numbers and is to be interpreted as the coefficients of the basis elements produced by sigkeys delivered in the
same order.

The program as written will only do calculations that fit easily into 32 bit memory and will reject widths and depths
that produce larger problems with an error message at the command line. This is to discourage exponentially large
problems that hang your computer. The underlying C++ code is structured as a sparse tensor. It can handle much
larger problems. The source code is available in the libalgebra folder in the PyPi source code file (the gz file).

The stream2. . . code is thread safe and parallelizing it can dramatically accelerate computations where many signa-
tures need to be computed. All signature code works through massive memoisation so this thread safety should never
be assumed without testing.

16 Chapter 5. esig: How to use it?

CHAPTER 6

Who is Involved?

Over the Summer of 2017, a team of interns worked on developing the esig package to a point where it was ready to
be shown to the world. The interns were working at the Alan Turing Institute, London, England. They were supervised
by Professor Terry Lyons of the Mathematical Institute, Oxford, and Dr Hao Ni of UCL.

We should note that the the underlying C++ libraries that allow esig to exist have been developed by Professor Lyons
and his colleagues and students over a number of years leading up to this internship. Without their hard work, this
project would not exist as it is today. In a future revision of this documentation, we’ll update this portion with the
names of those who were involved.

For now though, here are the five people who have worked on developing esig in recent times.

17

http://www.turing.ac.uk/

	Prerequisites for the esig Package
	Getting your Python Version
	Installing and Configuring Boost
	Windows
	Linux and macOS

	Installing esig
	Custom Library and Include Paths
	Building/Installing Fails!
	Running Tests

	Troubleshooting the esig Installation
	Unknown Command bdist_wheel
	Permission Denied when Installing
	Can’t Load Boost libraries
	numpy error

	esig: What is it?
	esig: How to use it?
	Who is Involved?

